Copied to
clipboard

?

G = C42.139D10order 320 = 26·5

139th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.139D10, C10.882- (1+4), (Q8×Dic5)⋊18C2, C4.4D4.8D5, (C4×Dic10)⋊44C2, (C2×D4).169D10, (C2×C20).77C23, (C2×Q8).135D10, C22⋊C4.33D10, (D4×Dic5).15C2, Dic5⋊Q822C2, C20.124(C4○D4), C4.15(D42D5), (C4×C20).184C22, (C2×C10).215C24, C23.37(C22×D5), Dic5.44(C4○D4), C20.17D4.11C2, (D4×C10).151C22, C23.D1037C2, C4⋊Dic5.233C22, (C22×C10).45C23, (Q8×C10).124C22, C22.236(C23×D5), Dic5.14D438C2, C23.D5.52C22, C23.11D1018C2, C56(C22.50C24), (C4×Dic5).139C22, (C2×Dic5).262C23, C10.D4.48C22, C2.49(D4.10D10), (C2×Dic10).304C22, (C22×Dic5).140C22, C2.74(D5×C4○D4), C10.93(C2×C4○D4), C2.55(C2×D42D5), (C5×C4.4D4).6C2, (C2×C4).299(C22×D5), (C5×C22⋊C4).62C22, SmallGroup(320,1343)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.139D10
C1C5C10C2×C10C2×Dic5C22×Dic5C23.11D10 — C42.139D10
C5C2×C10 — C42.139D10

Subgroups: 614 in 212 conjugacy classes, 97 normal (43 characteristic)
C1, C2 [×3], C2 [×2], C4 [×2], C4 [×13], C22, C22 [×6], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×12], D4 [×2], Q8 [×6], C23 [×2], C10 [×3], C10 [×2], C42, C42 [×6], C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×12], C22×C4 [×2], C2×D4, C2×Q8, C2×Q8 [×2], Dic5 [×2], Dic5 [×7], C20 [×2], C20 [×4], C2×C10, C2×C10 [×6], C42⋊C2 [×2], C4×D4, C4×Q8 [×3], C22⋊Q8 [×2], C4.4D4, C4.4D4, C422C2 [×4], C4⋊Q8, Dic10 [×4], C2×Dic5 [×4], C2×Dic5 [×4], C2×Dic5 [×4], C2×C20 [×3], C2×C20 [×2], C5×D4 [×2], C5×Q8 [×2], C22×C10 [×2], C22.50C24, C4×Dic5 [×2], C4×Dic5 [×4], C10.D4 [×2], C10.D4 [×6], C4⋊Dic5 [×2], C4⋊Dic5 [×2], C23.D5 [×6], C4×C20, C5×C22⋊C4 [×4], C2×Dic10 [×2], C22×Dic5 [×2], D4×C10, Q8×C10, C4×Dic10 [×2], C23.11D10 [×2], Dic5.14D4 [×2], C23.D10 [×4], D4×Dic5, C20.17D4, Dic5⋊Q8, Q8×Dic5, C5×C4.4D4, C42.139D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2- (1+4), C22×D5 [×7], C22.50C24, D42D5 [×2], C23×D5, C2×D42D5, D5×C4○D4, D4.10D10, C42.139D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, bd=db, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 125 6 130)(2 121 7 126)(3 127 8 122)(4 123 9 128)(5 129 10 124)(11 140 36 135)(12 136 37 131)(13 132 38 137)(14 138 39 133)(15 134 40 139)(16 115 22 120)(17 111 23 116)(18 117 24 112)(19 113 25 118)(20 119 21 114)(26 102 32 107)(27 108 33 103)(28 104 34 109)(29 110 35 105)(30 106 31 101)(41 100 143 158)(42 159 144 91)(43 92 145 160)(44 151 146 93)(45 94 147 152)(46 153 148 95)(47 96 149 154)(48 155 150 97)(49 98 141 156)(50 157 142 99)(51 70 90 71)(52 72 81 61)(53 62 82 73)(54 74 83 63)(55 64 84 75)(56 76 85 65)(57 66 86 77)(58 78 87 67)(59 68 88 79)(60 80 89 69)
(1 41 36 148)(2 47 37 144)(3 43 38 150)(4 49 39 146)(5 45 40 142)(6 143 11 46)(7 149 12 42)(8 145 13 48)(9 141 14 44)(10 147 15 50)(16 57 27 81)(17 53 28 87)(18 59 29 83)(19 55 30 89)(20 51 26 85)(21 90 32 56)(22 86 33 52)(23 82 34 58)(24 88 35 54)(25 84 31 60)(61 115 66 108)(62 104 67 111)(63 117 68 110)(64 106 69 113)(65 119 70 102)(71 107 76 114)(72 120 77 103)(73 109 78 116)(74 112 79 105)(75 101 80 118)(91 121 96 131)(92 137 97 127)(93 123 98 133)(94 139 99 129)(95 125 100 135)(122 160 132 155)(124 152 134 157)(126 154 136 159)(128 156 138 151)(130 158 140 153)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 29 11 24)(2 28 12 23)(3 27 13 22)(4 26 14 21)(5 30 15 25)(6 35 36 18)(7 34 37 17)(8 33 38 16)(9 32 39 20)(10 31 40 19)(41 83 46 88)(42 82 47 87)(43 81 48 86)(44 90 49 85)(45 89 50 84)(51 141 56 146)(52 150 57 145)(53 149 58 144)(54 148 59 143)(55 147 60 142)(61 97 77 160)(62 96 78 159)(63 95 79 158)(64 94 80 157)(65 93 71 156)(66 92 72 155)(67 91 73 154)(68 100 74 153)(69 99 75 152)(70 98 76 151)(101 134 113 129)(102 133 114 128)(103 132 115 127)(104 131 116 126)(105 140 117 125)(106 139 118 124)(107 138 119 123)(108 137 120 122)(109 136 111 121)(110 135 112 130)

G:=sub<Sym(160)| (1,125,6,130)(2,121,7,126)(3,127,8,122)(4,123,9,128)(5,129,10,124)(11,140,36,135)(12,136,37,131)(13,132,38,137)(14,138,39,133)(15,134,40,139)(16,115,22,120)(17,111,23,116)(18,117,24,112)(19,113,25,118)(20,119,21,114)(26,102,32,107)(27,108,33,103)(28,104,34,109)(29,110,35,105)(30,106,31,101)(41,100,143,158)(42,159,144,91)(43,92,145,160)(44,151,146,93)(45,94,147,152)(46,153,148,95)(47,96,149,154)(48,155,150,97)(49,98,141,156)(50,157,142,99)(51,70,90,71)(52,72,81,61)(53,62,82,73)(54,74,83,63)(55,64,84,75)(56,76,85,65)(57,66,86,77)(58,78,87,67)(59,68,88,79)(60,80,89,69), (1,41,36,148)(2,47,37,144)(3,43,38,150)(4,49,39,146)(5,45,40,142)(6,143,11,46)(7,149,12,42)(8,145,13,48)(9,141,14,44)(10,147,15,50)(16,57,27,81)(17,53,28,87)(18,59,29,83)(19,55,30,89)(20,51,26,85)(21,90,32,56)(22,86,33,52)(23,82,34,58)(24,88,35,54)(25,84,31,60)(61,115,66,108)(62,104,67,111)(63,117,68,110)(64,106,69,113)(65,119,70,102)(71,107,76,114)(72,120,77,103)(73,109,78,116)(74,112,79,105)(75,101,80,118)(91,121,96,131)(92,137,97,127)(93,123,98,133)(94,139,99,129)(95,125,100,135)(122,160,132,155)(124,152,134,157)(126,154,136,159)(128,156,138,151)(130,158,140,153), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,29,11,24)(2,28,12,23)(3,27,13,22)(4,26,14,21)(5,30,15,25)(6,35,36,18)(7,34,37,17)(8,33,38,16)(9,32,39,20)(10,31,40,19)(41,83,46,88)(42,82,47,87)(43,81,48,86)(44,90,49,85)(45,89,50,84)(51,141,56,146)(52,150,57,145)(53,149,58,144)(54,148,59,143)(55,147,60,142)(61,97,77,160)(62,96,78,159)(63,95,79,158)(64,94,80,157)(65,93,71,156)(66,92,72,155)(67,91,73,154)(68,100,74,153)(69,99,75,152)(70,98,76,151)(101,134,113,129)(102,133,114,128)(103,132,115,127)(104,131,116,126)(105,140,117,125)(106,139,118,124)(107,138,119,123)(108,137,120,122)(109,136,111,121)(110,135,112,130)>;

G:=Group( (1,125,6,130)(2,121,7,126)(3,127,8,122)(4,123,9,128)(5,129,10,124)(11,140,36,135)(12,136,37,131)(13,132,38,137)(14,138,39,133)(15,134,40,139)(16,115,22,120)(17,111,23,116)(18,117,24,112)(19,113,25,118)(20,119,21,114)(26,102,32,107)(27,108,33,103)(28,104,34,109)(29,110,35,105)(30,106,31,101)(41,100,143,158)(42,159,144,91)(43,92,145,160)(44,151,146,93)(45,94,147,152)(46,153,148,95)(47,96,149,154)(48,155,150,97)(49,98,141,156)(50,157,142,99)(51,70,90,71)(52,72,81,61)(53,62,82,73)(54,74,83,63)(55,64,84,75)(56,76,85,65)(57,66,86,77)(58,78,87,67)(59,68,88,79)(60,80,89,69), (1,41,36,148)(2,47,37,144)(3,43,38,150)(4,49,39,146)(5,45,40,142)(6,143,11,46)(7,149,12,42)(8,145,13,48)(9,141,14,44)(10,147,15,50)(16,57,27,81)(17,53,28,87)(18,59,29,83)(19,55,30,89)(20,51,26,85)(21,90,32,56)(22,86,33,52)(23,82,34,58)(24,88,35,54)(25,84,31,60)(61,115,66,108)(62,104,67,111)(63,117,68,110)(64,106,69,113)(65,119,70,102)(71,107,76,114)(72,120,77,103)(73,109,78,116)(74,112,79,105)(75,101,80,118)(91,121,96,131)(92,137,97,127)(93,123,98,133)(94,139,99,129)(95,125,100,135)(122,160,132,155)(124,152,134,157)(126,154,136,159)(128,156,138,151)(130,158,140,153), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,29,11,24)(2,28,12,23)(3,27,13,22)(4,26,14,21)(5,30,15,25)(6,35,36,18)(7,34,37,17)(8,33,38,16)(9,32,39,20)(10,31,40,19)(41,83,46,88)(42,82,47,87)(43,81,48,86)(44,90,49,85)(45,89,50,84)(51,141,56,146)(52,150,57,145)(53,149,58,144)(54,148,59,143)(55,147,60,142)(61,97,77,160)(62,96,78,159)(63,95,79,158)(64,94,80,157)(65,93,71,156)(66,92,72,155)(67,91,73,154)(68,100,74,153)(69,99,75,152)(70,98,76,151)(101,134,113,129)(102,133,114,128)(103,132,115,127)(104,131,116,126)(105,140,117,125)(106,139,118,124)(107,138,119,123)(108,137,120,122)(109,136,111,121)(110,135,112,130) );

G=PermutationGroup([(1,125,6,130),(2,121,7,126),(3,127,8,122),(4,123,9,128),(5,129,10,124),(11,140,36,135),(12,136,37,131),(13,132,38,137),(14,138,39,133),(15,134,40,139),(16,115,22,120),(17,111,23,116),(18,117,24,112),(19,113,25,118),(20,119,21,114),(26,102,32,107),(27,108,33,103),(28,104,34,109),(29,110,35,105),(30,106,31,101),(41,100,143,158),(42,159,144,91),(43,92,145,160),(44,151,146,93),(45,94,147,152),(46,153,148,95),(47,96,149,154),(48,155,150,97),(49,98,141,156),(50,157,142,99),(51,70,90,71),(52,72,81,61),(53,62,82,73),(54,74,83,63),(55,64,84,75),(56,76,85,65),(57,66,86,77),(58,78,87,67),(59,68,88,79),(60,80,89,69)], [(1,41,36,148),(2,47,37,144),(3,43,38,150),(4,49,39,146),(5,45,40,142),(6,143,11,46),(7,149,12,42),(8,145,13,48),(9,141,14,44),(10,147,15,50),(16,57,27,81),(17,53,28,87),(18,59,29,83),(19,55,30,89),(20,51,26,85),(21,90,32,56),(22,86,33,52),(23,82,34,58),(24,88,35,54),(25,84,31,60),(61,115,66,108),(62,104,67,111),(63,117,68,110),(64,106,69,113),(65,119,70,102),(71,107,76,114),(72,120,77,103),(73,109,78,116),(74,112,79,105),(75,101,80,118),(91,121,96,131),(92,137,97,127),(93,123,98,133),(94,139,99,129),(95,125,100,135),(122,160,132,155),(124,152,134,157),(126,154,136,159),(128,156,138,151),(130,158,140,153)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,29,11,24),(2,28,12,23),(3,27,13,22),(4,26,14,21),(5,30,15,25),(6,35,36,18),(7,34,37,17),(8,33,38,16),(9,32,39,20),(10,31,40,19),(41,83,46,88),(42,82,47,87),(43,81,48,86),(44,90,49,85),(45,89,50,84),(51,141,56,146),(52,150,57,145),(53,149,58,144),(54,148,59,143),(55,147,60,142),(61,97,77,160),(62,96,78,159),(63,95,79,158),(64,94,80,157),(65,93,71,156),(66,92,72,155),(67,91,73,154),(68,100,74,153),(69,99,75,152),(70,98,76,151),(101,134,113,129),(102,133,114,128),(103,132,115,127),(104,131,116,126),(105,140,117,125),(106,139,118,124),(107,138,119,123),(108,137,120,122),(109,136,111,121),(110,135,112,130)])

Matrix representation G ⊆ GL6(𝔽41)

4090000
1810000
001000
000100
000010
000001
,
3200000
0320000
0040000
0004000
000099
0000032
,
100000
23400000
0040700
0034700
000010
00003940
,
100000
23400000
00141400
00302700
0000320
0000032

G:=sub<GL(6,GF(41))| [40,18,0,0,0,0,9,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,9,32],[1,23,0,0,0,0,0,40,0,0,0,0,0,0,40,34,0,0,0,0,7,7,0,0,0,0,0,0,1,39,0,0,0,0,0,40],[1,23,0,0,0,0,0,40,0,0,0,0,0,0,14,30,0,0,0,0,14,27,0,0,0,0,0,0,32,0,0,0,0,0,0,32] >;

53 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H···4O4P4Q4R4S5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order12222244444444···444445510···101010101020···2020202020
size111144222244410···1020202020222···288884···48888

53 irreducible representations

dim111111111122222224444
type+++++++++++++++---
imageC1C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D102- (1+4)D42D5D5×C4○D4D4.10D10
kernelC42.139D10C4×Dic10C23.11D10Dic5.14D4C23.D10D4×Dic5C20.17D4Dic5⋊Q8Q8×Dic5C5×C4.4D4C4.4D4Dic5C20C42C22⋊C4C2×D4C2×Q8C10C4C2C2
# reps122241111124428221444

In GAP, Magma, Sage, TeX

C_4^2._{139}D_{10}
% in TeX

G:=Group("C4^2.139D10");
// GroupNames label

G:=SmallGroup(320,1343);
// by ID

G=gap.SmallGroup(320,1343);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,387,100,794,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽